Physics-informed neural networks have been widely applied to learn general parametric solutions of differential equations. Here, we propose a neural network to discover parametric eigenvalue and eigenfunction surfaces of quantum systems. We apply our method to solve the hydrogen molecular ion. This is an ab-initio deep learning method that solves the Schrodinger equation with the Coulomb potential yielding realistic wavefunctions that include a cusp at the ion positions. The neural solutions are continuous and differentiable functions of the interatomic distance and their derivatives are analytically calculated by applying automatic differentiation. Such a parametric and analytical form of the solutions is useful for further calculations such as the determination of force fields.
translated by 谷歌翻译
储层计算机(RCS)是所有神经网络训练最快的计算机之一,尤其是当它们与其他经常性神经网络进行比较时。 RC具有此优势,同时仍能很好地处理顺序数据。但是,由于该模型对其超参数(HPS)的敏感性,RC的采用率滞后于其他神经网络模型。文献中缺少一个自动调谐这些参数的现代统一软件包。手动调整这些数字非常困难,传统网格搜索方法的成本呈指数增长,随着所考虑的HP数量,劝阻RC的使用并限制了可以设计的RC模型的复杂性。我们通过引入RCTORCH来解决这些问题,Rctorch是一种基于Pytorch的RC神经网络软件包,具有自动HP调整。在本文中,我们通过使用它来预测不同力的驱动摆的复杂动力学来证明rctorch的实用性。这项工作包括编码示例。示例Python Jupyter笔记本可以在我们的GitHub存储库https://github.com/blindedjoy/rctorch上找到,可以在https://rctorch.readthedocs.io/上找到文档。
translated by 谷歌翻译
从经典动力学系统到量子力学的许多领域,在许多领域的进步核心,有效,准确地求解微分方程。人们对使用物理知识的神经网络(PINN)来解决此类问题,这引起了人们的兴趣,因为它们比传统的数值方法提供了许多好处。尽管它们在求解微分方程方面的潜在好处,但仍在探索转移学习。在这项研究中,我们提出了转移学习PINN的一般框架,该框架对普通和部分微分方程的线性系统进行了单次推断。这意味着,可以在不重新培训整个网络的情况下即时获得许多未知微分方程的方法。我们通过解决了几个现实世界中的问题,例如一阶线性普通方程,泊松方程以及时间依赖时间依赖的schrodinger复合物配合物部分差分方程来证明拟议的深度学习方法的功效。
translated by 谷歌翻译
对应用机器学习来研究动态系统有一波兴趣。特别地,已经应用神经网络来解决运动方程,因此追踪系统的演变。与神经网络和机器学习的其他应用相反,动态系统 - 根据其潜在的对称 - 具有诸如能量,动量和角动量的不变性。传统的数值迭代方法通常违反这些保护法,在时间上传播误差,并降低方法的可预测性。我们介绍了一个汉密尔顿神经网络,用于解决控制动态系统的微分方程。这种无监督的模型是学习解决方案,可以相同地满足哈密尔顿方程,因此哈密尔顿方程式满足。一旦优化了,所提出的架构被认为是一种杂项单元,因为引入了高效的参数的解决方案。另外,通过共享网络参数并选择适当的激活函数的选择大大提高了网络的可预测性。派生错误分析,并指出数值误差取决于整体网络性能。然后采用辛结构来解决非线性振荡器的方程和混沌HENON-HENEL动态系统。在两个系统中,杂项欧拉集成商需要两个订单比HAMILTONIAN网络更多的评估点,以便在预测的相空间轨迹中获得相同的数值误差顺序。
translated by 谷歌翻译
This paper investigates a phenomenon where query-based object detectors mispredict at the last decoding stage while predicting correctly at an intermediate stage. We review the training process and attribute the overlooked phenomenon to two limitations: lack of training emphasis and cascading errors from decoding sequence. We design and present Selective Query Recollection (SQR), a simple and effective training strategy for query-based object detectors. It cumulatively collects intermediate queries as decoding stages go deeper and selectively forwards the queries to the downstream stages aside from the sequential structure. Such-wise, SQR places training emphasis on later stages and allows later stages to work with intermediate queries from earlier stages directly. SQR can be easily plugged into various query-based object detectors and significantly enhances their performance while leaving the inference pipeline unchanged. As a result, we apply SQR on Adamixer, DAB-DETR, and Deformable-DETR across various settings (backbone, number of queries, schedule) and consistently brings 1.4-2.8 AP improvement.
translated by 谷歌翻译
With big data becoming increasingly available, IoT hardware becoming widely adopted, and AI capabilities becoming more powerful, organizations are continuously investing in sensing. Data coming from sensor networks are currently combined with sensor fusion and AI algorithms to drive innovation in fields such as self-driving cars. Data from these sensors can be utilized in numerous use cases, including alerts in safety systems of urban settings, for events such as gun shots and explosions. Moreover, diverse types of sensors, such as sound sensors, can be utilized in low-light conditions or at locations where a camera is not available. This paper investigates the potential of the utilization of sound-sensor data in an urban context. Technically, we propose a novel approach of classifying sound data using the Wigner-Ville distribution and Convolutional Neural Networks. In this paper, we report on the performance of the approach on open-source datasets. The concept and work presented is based on my doctoral thesis, which was performed as part of the Engineering Doctorate program in Data Science at the University of Eindhoven, in collaboration with the Dutch National Police. Additional work on real-world datasets was performed during the thesis, which are not presented here due to confidentiality.
translated by 谷歌翻译
在这项工作中,我们研究了面部重建的问题,鉴于从黑框面部识别引擎中提取的面部特征表示。确实,由于引擎中抽象信息的局限性,在实践中,这是非常具有挑战性的问题。因此,我们在蒸馏框架(dab-gan)中引入了一种名为基于注意力的生成对抗网络的新方法,以合成受试者的面孔,鉴于其提取的面部识别功能。鉴于主题的任何不受约束的面部特征,Dab-Gan可以在高清上重建他/她的脸。 DAB-GAN方法包括一种新型的基于注意力的生成结构,采用新的定义的Bioxtive Metrics学习方法。该框架首先引入徒图,以便可以在图像域中直接采用距离测量和度量学习过程,以进行图像重建任务。来自Blackbox面部识别引擎的信息将使用全局蒸馏过程最佳利用。然后,提出了一个基于注意力的发电机,以使一个高度可靠的发电机通过ID保存综合逼真的面孔。我们已经评估了有关具有挑战性的面部识别数据库的方法,即Celeba,LF​​W,AgeDB,CFP-FP,并始终取得了最新的结果。 Dab-Gan的进步也得到了图像现实主义和ID保存属性的证明。
translated by 谷歌翻译
尽管参数有效调整(PET)方法在自然语言处理(NLP)任务上显示出巨大的潜力,但其有效性仍然对计算机视觉(CV)任务的大规模转向进行了研究。本文提出了Conv-Adapter,这是一种专为CONCNET设计的PET模块。 Conv-Adapter具有轻巧的,可转让的域和架构,不合时宜,并且在不同的任务上具有广义性能。当转移下游任务时,Conv-Adapter将特定于任务的特征调制到主链的中间表示,同时保持预先训练的参数冻结。通过仅引入少量可学习的参数,例如,仅3.5%的RESNET50的完整微调参数,Conv-Adapter优于先前的宠物基线方法,并实现可比性或超过23个分类任务的全面调查的性能。它还在几乎没有分类的情况下表现出卓越的性能,平均利润率为3.39%。除分类外,Conv-Adapter可以推广到检测和细分任务,其参数降低了50%以上,但性能与传统的完整微调相当。
translated by 谷歌翻译
半监督学习(SSL)通过利用大量未标记数据来增强有限标记的样品来改善模型的概括。但是,目前,流行的SSL评估协议通常受到计算机视觉(CV)任务的约束。此外,以前的工作通常从头开始训练深层神经网络,这是耗时且环境不友好的。为了解决上述问题,我们通过从简历,自然语言处理(NLP)和音频处理(AUDIO)中选择15种不同,具有挑战性和全面的任务来构建统一的SSL基准(USB),我们会系统地评估主导的SSL方法,以及开源的一个模块化和可扩展的代码库,以对这些SSL方法进行公平评估。我们进一步为简历任务提供了最新的神经模型的预训练版本,以使成本负担得起,以进行进一步调整。 USB启用对来自多个域的更多任务的单个SSL算法的评估,但成本较低。具体而言,在单个NVIDIA V100上,仅需要37个GPU天才能在USB中评估15个任务的FIXMATCH,而335 GPU天(除ImageNet以外的4个CV数据集中的279 GPU天)在使用典型协议的5个CV任务上需要进行5个CV任务。
translated by 谷歌翻译
从样本中学习概率分布的任务在整个自然科学中无处不在。局部量子电路的输出分布构成了一类特别有趣的分布类别,对量子优势提案和各种量子机学习算法都具有关键的重要性。在这项工作中,我们提供了局部量子电路输出分布的可学习性的广泛表征。我们的第一个结果可以深入了解这些分布的有效学习性与有效的可模拟性之间的关系。具体而言,我们证明与Clifford电路相关的密度建模问题可以有效地解决,而对于深度$ d = n^{\ omega(1)} $电路,将单个$ t $ gate注入到电路中,这使这是如此问题很难。该结果表明,有效的模拟性并不意味着有效的可学习性。我们的第二组结果提供了对量子生成建模算法的潜在和局限性的见解。我们首先证明与深度$ d = n^{\ omega(1)} $局部量子电路相关的生成建模问题对于任何学习算法,经典或量子都很难。结果,一个人不能使用量子算法来为此任务获得实际优势。然后,我们证明,对于各种最实际相关的学习算法(包括混合量词古典算法),即使是与深度$ d = \ omega(\ log(n))$ Clifford Circuits相关的生成建模问题也是如此难的。该结果对近期混合量子古典生成建模算法的适用性造成了限制。
translated by 谷歌翻译